Getting Started with
the Java 3D™ API

A Tutorial for Beginners

Chapter 0
Overview and Appendices

Getting Started with Java 3D Tutorial Preface

© 1999 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A
All Rights Reserved.

The information contained in this document is subject to change without notice.

SUN MICROSYSTEMS PROVIDES THIS MATERIAL "AS IS’ AND MAKES NO WARRANTY OF ANY KIND,
EXPRESSED OR [IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SUN MICROSYSTEMS SHALL NOT BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS IN CONNECTION WITH THE FURNISHING, PERFORMANCE OR USE OF THIS MATERIAL,
WHETHER BASED ON WARRANTY, CONTRACT, OR OTHER LEGAL THEORY).

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY MADE TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES
IN THE PRODUCT(S) AND/OR PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Some states do not alow the exclusion of implied warranties or the limitations or exclusion of liability for incidental or
consequential damages, so the above limitations and exclusion may not apply to you. This warranty gives you specific legal
rights, and you also may have other rights which vary from state to state.

Permission to use, copy, modify, and distribute this documentation for NON-COMMERCIAL purposes and without fee is
hereby granted provided that this copyright notice appearsin all copies.

This documentation was prepared for Sun Microsystems by K Computing (530 Showers Drive, Suite 7-225, Mountain View,
CA 94040, 770-982-7881, www.kcomputing.com). For further information about course development or course delivery,
please contact either Sun Microsystems or K Computing.

Java, JavaScript, Java 3D, HotJava, Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun
Microsystems, Inc. All other product names mentioned herein are the trademarks of their respective owners.

The Java 3D Tutoria

Getting Started with Java 3D Tutorial Preface

Table of Contents

OVERVIEW AND APPENDICES...... .o oottt ettt a e s aabe e e e s bb e e e s aabse e e s aabeeaeannbeeaeanreaans 01
0.1 NAVIGATING THE TUTORIAL ©.tittieiutieitie et estes sttt sireesre s sre s sses e sase e sar e sar e s s are e s sbes e ssn e e sane s sneesaneeesnneesaree e 0-1
0.1.1 TULOIT@I CONMLENES.....eeteeteeitiestee it sttt ettt ettt b e sb e sb e b e s b e sb e e sbe e s be e sbeesbeesb e e s be e sbeesneenneenneenneas 0-2
IMIOAUIE OVEIVIBW. ...ttt bbbk btk kbt bbbkt b bRtk E b b £ b £ b e e b e b e bt eb e e bt e bt bt eb e bt et e ebeebeebe b 0-2

(O g0 (= G @001 = | £ PSPSSSRTSRRRP 0-3
WhEE IS INOE IN the TULOM@I ...ttt b et e et b e b et e sb et et e b e et e ebeebesbeebeabennen 0-5
0.1.2 HOw Can | USethe TULOMT@lccveeitieiieiieeiiee ittt 0-5
0.1.3 Prefaceto the TULOMIAleoieiiieiieit et 0-6
WVNEE S INSIOE..... ettt ettt b et e e e et et e e e b e e e ee e e e e e R e R e eE e R e b e Rt e R e eEeebeebeabeabeebeab e et e et e nbeabeabenbens 0-6
HOW t0 dOWNI 08 thiS QOCUMENLeitiiiiiiitiiti ettt bbbt sttt et e st e ebesbeabesbesrenren 0-6

F Y 8o 1= ool TP PP U PP PP UPTOPPPTPPTPPTPROPPPTON 0-6
FEEODBEK ...ttt bbb bbb bk E £ E R e b £ E R R R £ R R e R e R e Rt Rt Rt bt bt b e bt ebe b ebenre s 0-6
BN 070l =0 o Lo @0 0177 o\ 0= SR 0-6
VAV 4 oL T R =0 U1 <o USSP 0-6
(00Y < g1 17 o [TSRO SPUPRURROR 0-6
0.1.4 DISClAIMEYS.....eeteeiteesteesteestee st ste et e st s bt e st e e s b e e sb e e sbe e sb e e eb e e sb e e e be e ehe e abe e abeesbe e sbeesbeenbeenbeenbeenneenneennnenneas 0-7
0.2 (APPENDIX A) SUMMARY OF EXAMPLE PROGRAMScciutiiitiieititesiteasteesteeestee e saeeesmbeesbeesbeaesaeessanessnneasas 0-8
O R o [1 (o N = (V= 1 D LRSS 0-8
examples/Hell0JavaBD/HEIIOJAVABDA.............cieerer ettt ee st e st ee e te et e neeeneesteenteaneesseenseaneasseenseanennseens 0-8
examples/HelloJava3D/HEI0JAVABDDoiiie ettt et e st e et eenee e e nreen 0-8
examples/Hel|0JavaBD/HEI I OJAVABDIC...........eeiieeree et ee st et ee st e te et esteeseesteeseeeneesseenseeneesseenseanensseenseanennsenns 0-8
examples/Hell0Java3D/HEI0JAVASDAooiiii ettt ee e e nee e sreenteaneesseenseaneasseenseanennseens 0-8
(O €< o 01 [Y T PSP R PP 0-8
EXAMP] €Y GOOMEETY/AXISJBV@ ..t eeeesteeeteeeeestee st eee st esteaseesteeseeaneeaseeaseaneeaseeseaneeaseeseaneeaseenseaneeaseensesneesseenseaneessenns 0-8
EXAMP| €Y GEOMELNY/AXI SAPPJAVA. «. .o eeeeeneesteeseeaneesieesteaseasteeseeaneeaseeaseaneeaseesseaneeaseenseaneeaseenseansesseessesneesseensesnsessenns 0-8
exampl es/GeomMELry/AXi SCIASSDEMOA PPJAVAL ...c.veeueerieereeanieseesteeeesteeseeeseesteesseaseesseeneeaeesseenseaneesseensesneesseesseaeessenns 0-9
examples/GeOMELTY/COlOrCONSIANTSJAVA. ... eeveeereueesieesteaiesteeseeaeesteeseeaseesseesseaseesseesseaneesseenseaneesseensesnsesseesseaneessenns 09
eXampl €/ GEOMELTY/COlOrY OY QA PP JAVA.uveveeeeaneesteeseeaneesteesseaeeaseesseaneesseesseaneeaseesseaneeaseenseansesseesseansessemsseansessenns 0-9
eXampl €/ GEOMELTY/CONEY OY OAPPJAVAuveveeeraneraieeseeaneesseesseaeeaseesseaseeaseesseaseeaseesseaneesseesseansesseesseansesseesseansesenns 0-9
EXAMPI €S/ GEOMELTY/ TWISESITTD.JAVEA ... v eeeeeeeeteerieeeesiee st eee st este e s teeseeaseesteesseaseesteesaeaneesseenseeneesseenseanensseenseanenssenns 0-9
EXAMP!| €S GEOMELTY/Y OY OAPP-J V@ et eereeeneesteesteaneesteeseeaseasteeseeaneeaseeaseaneeaseesseaneeaseenseaneeaseenseansesseensesneesseensesnsessenns 0-9
€XaMP| €/ GEOMELTY/Y OY OL INEAPDJAVA ... tecueeteeeeaneeaieeseeaneesteesseaneeateesseaneeaseesseaneeaseesseaneeaseenseansesseessesnsesseesseansessenns 0-9
eXampl €5/ GEOMELTY/Y OY OPOINTAPDJAVA......veteereraneesieeseeaneesteeseeaeeateesseaneesseesseaneeaseesseaneesseesseansesseessesnsesseesseansessenns 0-9
0.2.3 EBSYCONTENL.eeieiiiiie ettt ettt e e sttt e e s bb e e e e aabee e e s aabe e e e aabbe e e e anbee e e sanbeeeeanbeeeeeanreeaeaan 0-10
examples/easy Content/BackgrOUNGAPDJBVA.c..ueutieereereeieseesieaeesteeseeaeesteeseeaseesseeseeeneesseesseansesseesseensesseensesnes 0-10
exampl es/easy Content/GEOMINTFOAPPJAVAeieeeieereereeeesee e aee st eree e steeseeaseesseeseeeseeaseenseansesseenseaneesseensesnes 0-10
eXampl €5/€aSy CONLENY/ TEXE2DAPD.JAVALeueeireerieeeraeesteeteaseesteeseeaseeateeneeaneesseeseeaneeaseenseaneesseesseansesseesseansesseensesnes 0-10
eXampl €5/€aSy CONLEN/ TEXEBDAPP.JAVALeeueerreereeeeraieesteeeeareesteereeaseesteereeaneeaseeseeaseesseenseeneesseenseansesseesseansesseensesnes 0-10
0.2.4 TNEEIACTION ..ttt ettt ettt b bttt b e e bttt e bt e bt e et e bt e b e e an e e n e e n e e r e e reereenre s 0-10
€XaMPl €/ INEraCti ON/DOOTAPPJAVA.veeveeneeareesieeeeaseesteeneeaseesseeseeaseesteesseaneesseesseaseeaseenseaseesseesseansesseesseensesseenseenes 0-10
examples/Interaction/K eyNaVi Qa0 APD.JAVAL.........e vt ieerieereeaeeseeseeaeesteeneeaeesseeseeaseesseeseeaseesseesseasesseesseensesseessesnes 0-10
examples/Interaction/M OUSEBENAVI OTAPPJAVA.cueireerieeieeiesiee e et este e st e seeeneesteeseeeseesseeneeaneesseenseaneesseenseenes 0-11
examples/Interaction/M OUSENAVI GALOTAPDJAVAcvviueereieeeeieseeneeaeesteeneeaeesteeseeaseesseeneeaseesseesseansesseesseensesseensesnes 0-11
examples/INteraction/MOUSEPI CKA DD JAVAL....... .ottt ettt et e see st e seeaneesreenteeneesseeneeenes 0-11
examples/Interaction/MOUSEROEIEA PP JAVAeivveeeieeseee e et e s teeste e steeseeaseesseeneeeneesseenseansesseenseeneesseenseenes 0-11
examples/INteraction/M OUSEROIEIE2ZA PP JBVAc.veurireerieereeiesteeseeeeesteereeaneesteeseeaseeaseeneeeneesseesseansesseesseensesseenseenes 0-11
examples/Interaction/PiCKCal lDACKA PP JAVAoivee ettt ee st e teaneesreenteeneesseenseenes 0-11
examples/Interaction/SimplEBENAVIOTA PP JAVA.cuvieeriiee et eee sttt ee st e see e teeseeeseesreeneeaneesseenseeneesseenseenes 0-11

The Java 3D Tutoria O-i

Getting Started with Java 3D Tutorial Preface

0.2.5 ANIMBLION ..ottt ettt r e bt bt bbbt E e Rt Rt Rt Rt E e e R ne e re e ne e reenr s 0-11
eXamples/ANiMati ON/ATPNAADPDJAVAL......eveeeeiieereee ettt et e e ste e steeseeeseeateeeeaneeaseeneeanseaseenseeneesseenseenes 0-11
examples/ Animati ON/BillDOBIAAPDJAVEAeviuieieee ettt ee st esteeneeeneesseenteeneeareenneenes 0-12
€XamMpPl €S/ ANIMEL ON/CIOCKAPPJAVA. ... eevteeeeiiesieeeeaieesteeseeieestee et aseesteesteaneesteeneeaseeaseeseaneesseenseansesseenseansesseensesnen 0-12
examples/Animati ON/INtErPOIALOr A PDJAVA. eereeeee ettt e sttt ee st e seeeneesteeseeeseesseeneeaneesseenseeneesseenseenes 0-12
EXAMPI €S/ ANIMEL ON/L ODAPPJBVA ...t eeteeneeeieesieeeeaieesteeneeeseesteeseeaseeateenseaneeaseesseaseeaseesseaseeaseenseansesseesseansesseensesnes 0-12
examples/ANiMati ON/M OIPRADDJAVAL.....c.veeeeiieerieere et e e et ee st esteeneesteeneeaseeaseeeeaneesseenseansesseenseeneesseenseenes 0-12
examples/Animati ON/M OrPNBAPPJAVEA.eeueeiieerieeeeeeeste e e eee s e e see e s e eseeaneesteeseeaseeaseenseaneeaseenseansesseenseeneesseensesnes 0-12

L S I | o | SO RSP UTRR 0-12
eXaMpPl e/ i gt/ LightSNPIANESJAVA. ... eeeeieieiiesie ettt e st te e steeseeeseesteeeeemeesseeneeaneeaseenseeneeaseenseenes 0-12
EXAMPIES TGN/ LITPlANEJBVA ..ottt ettt ettt e este e et eneesteeteemeesseeneeaneeaseenseeneeaseenseenes 0-12
o o LS T | T I o 1 L - Y- USSP 0-12
o oL T L I IS - Y= SRS 0-12
o g ol Lo a1 AT 1S oTa oL - Y WSS 0-13
(S 00 0 = 1o 1V oz Y= o o - Y VSRS 0-13
o g ol a1 A g e 0 1A o o T = Y ST 0-13
eXamMpPl €S/ light/ SNiNINESSAPPJAVAeveeei e iiesie et ee st e et e st e s bt e ree e e steeseeaseeaseeeeeneesseenseanseaseenseeneesseenseanes 0-13
(S 0 0l1=S 1T 101 7AS o o) Mo | g1 7AYo o J = Y- TSP 0-13

O A < (U | = TSP UU PP OPUPPTROUPPRN 0-13
exampl es/teXtUre/BOUNTArYCOIONADDeoveeeeireereeeeaeesteeseeaseesteeseeaneesteenseaneesseeseeaseeaseeseaneesseenseansesseesseansesseenseenes 0-13
exampl es/teXture/BOUNTarYM OUEA PPc.eeeeireerieeeeaeesteesteereesteeseeaseesteenseaneesseeseeaseeaseeseaseesseenseansesseenseansesseenseenes 0-13
EXAMP] ES/TEXTUNE/M IPIMBIAD .ot eueeeteesteeeeateesteeeeaseeste e seaseesseeneeaneeaseenseaneeaseeeeaseeaseenseaneeaseenseansesseenseansessennsesnen 0-13
EXAMP] ES/TEXTUNE/M I PIMBDAPPZ. et eteeeteeeeetee e e e aseeste e teaseesseeeeaneeaseenseaneeaseeneeaneeaseeseaneesseenseansesseenseeneesseenseenes 0-13
€XaMPl €S/ EXTUINE/M IPMBPDEMO. ... e iteeteeeeeiiesteeseeseesteeeeeseesteeseeaseeateeseaneeaseeneeaneeaseeseaneeaseenseansesseenseansessennseenes 0-13
EXaMPl €S/ tEXTUrE, SIMPIET EXTUNEA DD - .+ eteeneeeteeieeeeeteeste e e eseesteeseeaseesteeneeaneesseeneeaneeaseeseaneeaseenseansesseenseansesseenseenes 0-14
exampl es/texture/ SimpPlET EXTUNESPINADP ... «e v eerteeeraeerteereeaeesteeneeaseesteenseaeeaseeseeaseeaseesseaseesseesseansesseesseensesseessesnes 0-14
EXaMPl €S/ tEXTUrE, TEXE2D T EXIUMNBADP - evteueeeteeteeeeeseesteeseeaseesseeneeaneesseeseaneeaseenesaneeaseenseaneesseesseansesseesseansessennseenes 0-14
eXaMpPl S/ tEXTUIre/ TEXTUr@COONTAID .. veeeeueeireerieeeeaseesteeeeaseasteeneeaseesseeseaneesseeneeaneeaseeseaneesseenseansesseenseansesseensesnes 0-14
exampl e/ teXture/ TeXtUr@COOTAGENMADP ...« e veireeeeeeeaseesteeeeeseesteeseeaseesteesseaneesseeseeaseeaseesseaneesseenseansesseesseansesseensesnes 0-14
o o1 (UL = 1o [Y o] o S 0-14
eXampl €S/ tEXTUrE, TEXEUNEAPTANEADD - veeeeieeiee et ee st e et e st e et e e teeee e e steeneeeseeaseeeeeneesseenseansesseenseaneesseenseenen 0-14
eXxampl €S/ teXtUre) TeXtUrEAPT MITIVEADD. «. . e eeireerteee e e e e s e see e ee st e e steaneesteeseeaseesseeneeeseeaseenaeaneeaseenseeneesseenseenen 0-14
EXAMPl €S/ tEXTUNE, T EXIUNEOSCENEA PP . ¢+ et eeeeteerteeeeateeste e teeseesteeseeaseeateeeeaneesseeneeaneeaseeseaneeaseenseansesseenseaneesseensennes 0-14
eXampl eS/tEXTUre/ TEXTUNEREQUESLADD ... e e eeeiieerieeeeeeesteesteeeestee et aneesteeneeaneesseeneeaneeaseeseaneesseenseansesseenseaneesseenseenes 0-14

0.3 (APPENDIX B) REFERENCE MATERIAL ...ciiutiiiteteitiee sttt e steesteeestee e saee e sabe e sabeasbeeesbeessbeeesabeesmbeesbeeenbaeasneeas 0-15

0.3 1 BOOKS. ..ttt tee ittt ettt ettt ettt b e E bRt E e Rt Rt Rt Rt R Rt Rt Rt Rt ne e re e re e reenre s 0-15

0.3.2 TheJava 3D API can be downloaded from the Java 3D HOmMe Page:ccccoeevieenieniiien e, 0-15

0.3.3 SUN JAVA WD PAGES ...ttt ettt et e st e e et e e shee e snbe e s be e e bee e nnee s 0-15

0.3:4 Other WED PAgESveieeieeiiee ettt ettt ettt ettt ettt e e b et sbee e sabe e sabeeebe e e ebee e sabeesmbeeabeeesaeeas 0-16

0.4 (APPENDIX C) SOLUTIONS TO SELECTED SELF TEST QUESTIONSvvteuieesiteasieeesteeesteeesueessmsesseeeesseessaeens 0-17

0.4.1 Answersto QUESLIONS IN CRAPLEN L........ooiiiiiiiiiiii ettt sbee et be e saee s 0-17

0.4.2 Answersto QUESLIONS IN CRAPLEN 2........coiiiiiiiieiii ettt b e sae e saee s 0-19

0.4.3 Answersto QUESHIONS TN Chaer 3........ooiiiiiiiiii et be e snee s 0-20

0.44 Answersto QUESLIONS IN CRAPLEN 4........coouiiiiiieiei ettt sbe e sbe e saee s 0-21

0.45 Answersto QUESLIONS N ChAPLEN 5........ooiiiiiiiiiii et be e saee s 0-22

0.4.6 Answersto QUESLIONS IN CRAPLEN B........cciuiiiiiiiiiie ettt be e ree e saee s 0-23

0.4.7 AnsSWersto QUESLIONS IN CRAPLEN 7oo ittt et be e sbee e saee s 0-23

0.5 BLOSSARY ittt ittt ettt e e e e E e h e e e r e e e 0-25

The Java 3D Tutoria O-ii

Getting Started with Java 3D Tutorial Preface

Module 0
Overview and Appendices

Welcome to version 1.5 of The Java 3D API Tutorial. This tutorial contains seven chapters explaining the
most frequently used features of the Java 3D API.

Since the tutorial has been developed and released incrementally, several versions of the tutorial exist. For
this reason the revision history may be important to readers of earlier versions. The following table presents
the revision history for the tutorial.

Table 0-1 Revision History of the Tutorial.

e | e [nevown | Mg IeEe T e
10 Feb 99 land 2 n/‘a n/‘a
11 Apr 99 Oand 6 land 2 n/a
12 May 99 3 Oand 2 land 6
13 Jun 99 4 0 1,2,3and 6
14 August 99 5 0,1land4 2,3,and 6
15 October 99 7 0 1,2,3,4,5and 6

*For the purposes of this table, a major revision is a change to fix a mistake of fact in some part of the
chapter. It could be as little as little as changing one line of code, fixing a single sentence, or adding
something inadvertently omitted, but involves a fix of substance. A minor revision is a change that does
not affect the meaning of the chapter (e.g. formatting, or including new links in the PDF file).

0.1 Navigating the Tutorial

The tutoria is a collection of modules. Each Module is a collection of chapters (except this one, Module O
has only one chapter, Chapter 0). The chapters in a Module are related. See section 0.1.2 for more
information on module and chapter dependencies.

With each chapter of the tutorial being published as separate documents, the following features have been
employed:

Appendices:. To dlow easy updates to the Appendices while keeping them centraly located,
including the Glossary, are published with Chapter O (this chapter). As a consequence, they
appear as numbered sections in this document. However, the letter names used in version 1.0 of
thetutorial (‘A’, 'B', and 'C") are retained for compatibility with the older chapters.

Page numbering: To allow easy reference to pages in specific chapters, each document's page
numbering is prepended with the chapter number. For example, thisis page 0-1, which is page one
of chapter zero.

The Java 3D Tutorial 0-1

Getting Started with Java 3D Tutorial Preface

0.1.1 Tutorial Contents

The tutoria is organized as a collection of four modules, each is outlined in the following sections.
Beginning on page 0-3 the section titled "Chapter Contents" presents the contents of each chapter.

M odule Overview

Module 0: Navigation and Appendices

The document you are reading is Module 0. In addition to the navigational material, it contains the
appendix material and the glossary. This document will be updated with each new chapter.

Module 1: Getting Started with the Java 3D API

The introductory module presents the basics of Java 3D
programming. Chapter 1 begins at the level of a Java programmer o
who has never used Java 3D. By the end of the Chapter 2, the T, dy,do) = {géﬁﬂi}
novice Java 3D programmer understands the Java 3D scene graph,

how to create a virtua universe by specifying a scene graph, how
to create geometry, appearances, and program custom visual
objects for use in smple virtual universes

0001

Chapter 1: Getting Startedcccceveeeveeinceeereeen, 33 pages, February 1999
Chapter 2: Creating Contentcocceeeveeinenenciieenn, 45 pages, February 1999
Chapter 3: Easier Content Creation.........cccceeevveeennen. 29 pages, May 1999

Module 2: Interaction and Animation

Chapter 4 covers behavior basics, along with topics related to

making interactive virtual worlds. Chapter 4 includes material
on virtual universe navigation with the mouse and keyboard and
picking. Chapter 5 continues with specialized behavior classes (

such as interpolators, level of detail, and billboard behaviors to
create animated visual objects.

Chapter 4: INteraction..........ccceeeveeeeieeeenee e 52 pages, June 1999
Chapter 5: ANIMationcocceeeiieeiiiie e 38 pages, August 1999

The Java 3D Tutoria 0-2

Getting Started with Java 3D Tutorial Preface

Module 3: Lights and Textures

Visud richness is added to the virtua universe in this module.
Using lights, material properties, and textures, a Java 3D

programmer can create visualy rich objects without creating &

complex geometry.

Chapter 6: LIghtS....ccuviiiieiiieeeee e 34 pages, April 1999
Chapter 7: TEXIUIES....ccoiieeeeiiieeee e 35 pages, October 1999

Chapter Contents

Here is alisting of the table of contents for each of the published chapters. If you are reading this online
you can use the links to the appropriate place in the appropriate document.

Module 1: Getting Started with the Java 3D API

Chapter 1: Getting Started

11 What iSJAVA 3Dceiiiiiiiieiieeeee et 1-1
1.2 TheJaVa3D AP ... e e 1-2
1.3 Building aSCene Graph..........cocveiiiiiieiieiee e 1-2
1.4 A Basic Recipefor Writing Java 3D Programs..........c.ccceceereeeieeseeninens 1-8
15 SomeJava3D TermiNOIOgY.......cccemureriireiieeenieeeieeeeiee e e see e e 1-12
1.6 Simple Recipe Example: HelloJava3Da..........ccccoeveieeieeiiiee e 1-13
1.7 Rotatingthe CUDec.ooi e 1-19
1.8 Capahilitiesand Performance..........cccoeceveieriiiee e 1-22
1.9 Adding Animation BENAVIONcccoueeiiiieiiieeiiee e 1-25
1.10 Chapter SUMMEBIYccoieeeiiieeiieeesieeeieeeseeeeseeee e e e sneeeeeeeesneeeesneeeeneens 1-33
LA1 S T i e 1-33
Chapter 2: Creating Content

2.1 Virtua Universe Coordinate SYySteMccccveieereerireeneenee e 2-1
2.2 Visua Object Definition BASICS........ccoeiviriiiiienie e 2-2
2.3 GeometriC Utility Classes........cooviiiiiiieiieiieeeesee e 2-6
24 MathematiCal ClaSSES.........ccciiiiiiriiiiiesicee e 2-15
25 GEOMELNY ClIESSES....cciueieiiiieiiee et ettt e e e s snee e e eneeeenees 2-20
2.6 Appearance and AttHDULEScoor i 2-34
2.7 SEI TO i e 2-44

The Java 3D Tutorid 0-3

Getting Started with Java 3D Tutorial Preface

Chapter 3: Easier Content Creation

31 Whatisin ThiSChaptercccooiieiiiieeee e 31

3.2 LOAOEIS. ..ot 3-2

3.3 GEOMELIYINO. ...ttt 3-7

B4 TEXIZD .. e 3-13
35 TEXIBD .o e e 3-16
3.6 BaCKgrOUNG............oeiiieiiie et 3-22
G A = To W1 o [g | I 3-26
3.8 USEN DaIAccueiiiieiieiee ettt 3-28
3.9 Chapter SUMIMAIYc.eoiivieiieieeeee et 3-29
L0 SEIT O e 3-29

Module 2: Interaction and Animation

Chapter 4: Interaction

4.1 Behavior: the Base for Interaction and AnNimationcccceeververcneenen. 4-1
4.2 BeNaVIOr BASICScccviiiiiiieiiienie et 4-4
4.3 Wakeup Conditions: How Behaviorsare Triggeredcoevvevvenneennen. 4-12
4.4 Behavior Utility Classes for Keyboard Navigationccccccecvevceeennene 4-25
45 Utility Classes for Mouse INteractionccccceeveererienenee e 4-29
T . [(1 o SRS 4-35
4.7 Chapter SUMMEYcooviiieeieeeieeiee st nees 4-51
4.8 SEIf TES i e e 4-51
Chapter 5: Animation

5.1 ANIMELONS...ccitiiiieiieitee ettt e e sn e sn e e sneensneeneesneenaneens 5-1
5.2 Interpolators and Alpha Object Provide Time-based Animations.............. 5-2
5.3 BillD0ard ClasS.......c.cooiiiiiiiieieeeee e 5-24
54 Leve of Detail (LOD) ANIMELIONS.........ccereieeeeieeeaieeeneee e seeeeseeee e 5-28
L3 T 1Y/ o o o T 5-33
5.6 Chapter SUMIMAIYc.ccoiiiieiiiiiiiie et 5-38
5.7 SEIf TOS i e 5-38

Module 3: Lights and Textures

Chapter 6: Lights

6.1 Shading iNn JaVa3Dcociiiiiiiiiieeee e 6-1
6.2 Recipefor Lit Visual ObJECtS........ooviiiiiiieee e 6-4
6.3 LIgNt ClaSSESciiiiieiiieeie et 6-9
6.4 Material ODJECL........coiuiiiiiiiieee e 6-20
6.5 SUMACENOIMEIS.......ciiiiii e 6-24
6.6 Specifying the Influence of LightsS..........ccoviiiriiiiiie e 6-25
6.7 Creating Glow-in-the-Dark Objects, Shadows and Other Lighting Issues . 6-29
6.9 Chapter SUMIMAIYccoiiiieiieieieie et 6-34
B.10 SET-TES ..o 6-34

The Java 3D Tutorial 0-4

Getting Started with Java 3D Tutorial Preface

Chapter 7: Textures

A8 R VAT o= L= = L o 7-1

A = T Lo = 1 oo 7-2

7.3 Some Texturing APPlICALIONSooviuiiriieeiee e 7-14
T4 Texture AUIDULES.oooiee e 7-16
7.5 Automatic Texture Coordinate Generation..........cccoeceeereeeeieeeseeeeseee e 7-20
7.6 Multiple Levels of Texture (Mipmaps)cccceeeieeeriereneee e seeeseee e 7-24
7.7 Texture, Texture2D, and Texture3D APl ... 7-29
7.8 TextureLoader and NewTextureLoader APlccooociieiiiiiiieeeee 7-33
7.9 Chapter SUMIMAIYcoeiiiieiiee et see e e e sae e sneeeenneee e 7-34
T30 SET TOI .ot 7-35

What isNot in the Tutorial

This tutoria is on the use of the Java 3D API. The most commonly used features of the Java 3D API are
covered. Java 3D API features not covered include collisions, sensors, geometry compression, spatial
sound, multiple views. While many of the Java 3D utilities distributed with the core API are covered in the
tutorial, not all are. In addition, non-API issues such as artistic considerations, specific application
suggestions, and unusual display devices are also not covered.

0.1.2 How Can | Usethe Tutorial

Modules are collections of related chapters. However, you may pick and choose the chapters that suit your
needs. In general, chapters in the same module are dependent on the earlier chapters in the same module.
For example, Chapter 2 depends on knowing the material in Chapter 1. Likewise, the reader of Chapter 5
is expected to be familiar with the topics in Chapter 4.

Module dependencies are represented in the following figure. If you have no experience with Java 3D, dtart
with Module 1 and proceed to either Module 2 or Module 3.

Module 2:
Interaction
and
Animation

Module 1:
Getting Started
with the Java 3D
API

Module 3:

Textures

Figure 0-1 Paths Through The Java 3D Tutorial

The Java 3D Tutorid 0-5

Getting Started with Java 3D Tutorial Preface

Throughout the tutoria are reference blocks - summaries of the API for certain classes. The reference
blocks are provided in the tutoria to make reading easier, not to replace the Java 3D APl Specification
Guide or any other reference.

The reference blocks were checked for accuracy when this document was published, but the Java 3D API
may have changed. If you are having trouble with a program, be sure to check a current edition of the Java
3D API Specification. Also, refer to section 2.2 (page 2-4) for more information on reference blocks.

0.1.3 Prefacetothe Tutorial

What’sInside

This is a tutorial for the Java 3D APl version 1.1.2. It is composed of the text (this document), several
other text documents and a number of example applications. The text of the tutoria is available in the
Acrobat (PDF) file format. The PDF files include thumbnails, links, and bookmarks making them easier
to use online. The files are dso readable in hardcopy form. However, severa of the images are in color
and details are lost when printed monochromatically.

How to download this document

The tutorial documents are available online with the source for the example programs, all of which can be
downloaded fromht t p: / /] ava. sun. conf product s/ j ava- medi a/ 3D/ col | ateral /

Audience

This tutorial is meant for the Java programmer with some graphics experience, with little or no knowledge
of Java 3D. If in addition to being familiar with Java you are familiar with the terms pixel, image plane,
RGB, and render, then you have the background to proceed. You don't need to know about z-buffer, 3D
transforms, or any other 3D graphics APl to understand this tutorial, but it may help. In any case, this
tutorial iswritten to be very accessible.

Feedback

As with al of our products, we strive for excellence in quality. If you have any questions, comments, or
have an eror to report, pleasse consult the Java 3D Home Page,
http://ww. j ava. sun. coni product s/ j ava- nmedi a/ 3D, for contact information.

Typogr aphl ¢ Conventions

Courier type isusedtorepresent computer code and names of files and directories.
Italic type is used for emphasis.

Bold is used in the text to indicate program elements

Gray background represents Reference Blocks

Double outline sections are advanced sections

Single outline sections are document meta-information sections

What softwareisrequired
Consult the Java 3D Home Page for the most current information.

Cover Image

The cover image is of a twisted strip rendered by Java 3D. The program is discussed in Section 2.6. The
code is available with the examples distributed with this tutorial.

The Java 3D Tutorial 0-6

Getting Started with Java 3D Tutorial Preface

0.1.4 Disclaimers

All software associated with this tutorial is provided "AS IS,;" without a warranty of any kind. ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR
ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING
THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This software included with this tutorial is not designed or intended for use in on-line control of aircraft, air traffic,

aircraft navigation or aircraft communications; or in the design, construction, operation or maintenance of any
nuclear facility. Licensee represents and warrants that it will not use or redistribute the Software for such purposes.

The Java 3D Tutorial 0-7

Getting Started with the Java 3D API A. Summary of Example Programs

0.2 (Appendix A) Summary of Example Programs

This tutoria is distributed with a set of example programs. Each example program included in the
distribution is described here. If you do not have the example programs, refer to the preface for download
instructions.

0.2.1 HedloJava3D

HelloJava3D is a series of programs used in the first chapter of the tutorial. The complexity of these
examples begins at the extreme end of simplicity and builds dightly.

examples/HelloJava3D/HelloJava3Da

This program displays a single color cube object that is static, and is neither transformed nor rotated from
the origin. Consequently, it appears as a single rectangle. This program is only intended to demonstrate
the basic construction of a Java 3D program. It isalso used as the basis for the subsequent examples.

examples/HelloJava3D/HelloJava3Db

This program displays a single color cube object that is static but rotated from the origina orientation.
Consequently, more than one face of the cube is visible when rendered. This program is only intended to
demonstrate the basic construction of a Java 3D program. It is also used as the basis for the subsequent
examples.

examples/HelloJava3D/HelloJava3Dc

This program displays a single color cube object that is animated. The cube spins in place at the origin.
Consequently, more than one face of the cube is visible as the animation takes place. This program is
intended to demonstrate the basic construction of an animated Java 3D program.

examples/HelloJava3D/HelloJava3Dd

This program displays a single color cube object that is transformed and animated. The cube spinsin place
a the origin. Consequently, more than one face of the cube is visible as the animation takes place. This
program is intended to demonstrate the basic construction of an animated Java 3D program.

0.2.2 Geometry

The exanpl es/ Geonet ry subdirectory contains the program examples for the second chapter of the
tutorial. Each of these programs demonstrates something about specifying geometry for visual objects.

examples/Geometry/Axis.java

Axi s. j ava defines a visua object class using an IndexedLineArray object used to visualize the axis.
This code of this program does not appear in the text of the tutorial, it is intended as a class available for
your use. The program Axi sCl assDenpApp. j ava usesthis Axis class (see below).

examples/Geometry/AxisApp.java
This program displays the axis to demonstrate using LineArray object.

The Java 3D Tutorial 0-8

Getting Started with the Java 3D API

examples/Geometry/AxisClassDemoApp.java

A ColorCube orbits around the origin in this program. The code of
this program does not appear in the text of the tutorial. It simply
demonstrates a use of the Axi s. j ava class (see above).

examples/Geometry/Color Constants,java

This code is an example of a class that defines a number of color
constants. The application spins the yo-yo about the y-axis to
show the geometry.

examples/Geometry/Color Y oyoApp.java

This program displays a yo-yo using four TriangleFanArray
geometry objects with colors. The application spins the yo-yo
about the y-axis to show the geometry.

examples/Geometry/ConeY oyoApp.java

This program displays a yo-yo created with two Cone objects. A
default Appearance object is used. The application spins the yo-yo
about the y-axis to show the geometry.

examples/Geometry/TwistStrip.java

This program displays a twisted strip as an example of using the
TriangleStripArray. The twist strip program also demonstrates
culling.

examples/Geometry/Y oyoApp.java

This program displays a yo-yo visual object created with four
TriangleFanArray objects. A default Appearance object is used.
The application spins the yo-yo about the y-axis to show the
geometry.

examples/Geometry/Y oyoL ineApp.java

This program displays the TriangleFanArray object with the
Appearance set to display lines only. The application spins the
yo-yo about the y-axis to show the geometry.

examples/Geometry/Y oyoPointApp.java

This program displays the TriangleFanArray object with the
Appearance set to points lines only. The application spins the
yo-yo about the y-axis to show the geometry.

The Java 3D Tutorial 0-9

A. Summary of Example Programs

f25 AxisClassDemoApp

E'-;_,% [fulm‘r'uyu.ﬁpp'

Getting Started with the Java 3D API A. Summary of Example Programs

0.2.3 EasyContent
examples/easyContent/BackgroundApp.java

This application demonstrates defining geometry for the background of a virtual world. The sceneis of a
grid of lines to represent the ground, a PointArray for stars, and a LineArray for a constellation. The stars
and constellation are in the background. The viewer can move around in the scene and experience the
relative motion between the ground and the stars in the background.

The interaction (motion) is provided through the KeyNavigator class (documented in Chapter 4) and a
BoundingLeaf application bounds, which provides interaction in the virtual world without bounds. The
BoundingLeaf isadded to the view branch graph in this application.

examples/easyContent/GeomInfoApp.java

This application demonstrates the use of the GeometryInfo class to create Java 3D geometry specified by
arbitrary polygons. This application creates the surface of a car using polygons. The Triangulator,
Stripifier, and Normal Generator classes are used to convert the polygons into triangle strips with normals
so the specified geometry can be shaded. A wire frame view of the geometry can be viewed by providing
any command line argument when invoking the program. For example: j ava Geonl nf oApp -1i nes
will show the wire frame instead of the shaded surfaces.

examples/easyContent/Text2Dapp.java

A simple example of using the Text2D object to add text to a Java 3D virtual world. The Text2D object
rotates in the virtual world.

examples/easyContent/Text3Dapp.java

A simple example of using the Text3D object to add text to a Java 3D virtual world. The Text3D object
rotates in the virtual world.

0.2.4 Interaction

The programs collected in the examples/Interaction subdirectory correspond to the topics presented in
Chapter 4. Creating and using behaviors to provide user interaction is the subject of the chapter.

examplesd/| nteraction/Door App.java

This program demonstrates using the postld() method and WakeupOnBehaviorPost WakeupCriterion
objects to coordinate behavior objects. In this program two behavior classes are defined: OpenBehavior
and CloseBehavior. Then one instance of each behavior class are used to open and close adoor. Actualy,
a ColorCube is used as a stand-in for the door.

examples/I nter action/K eyNavigator App.java

This program demonstrates using a KeyNavigatorBehavior object to provide keyboard based viewer
navigation in the virtual world. The user is able to press keys to move forward, back, left, right, up and
down aswell asrotate l€eft, right, up and down.

The Java 3D Tutorial 0-10

Getting Started with the Java 3D API A. Summary of Example Programs

exampleg/I nter action/M ouseBehavior App.java

This program shows how &l three MouseBehavior classes (MouseRotate, MouseTrandate, and
MouseZoom) can be combined to provide a variety of interactions using the mouse. MouseRotateApp is a
simpler version of this program as it only uses the MouseRotate class.

examples/I nter action/M ouseNavigator App.java

This program demonstrates how the MouseBehavior classes (MouseRotate, MouseTrandate, and
MouseZoom) can be used to provide mouse-based viewer navigation in the virtual world. The user is able
to move and rotate in response to combinations of mouse button presses and movements.

exampleg/I nter action/M ousePick App.java

This program demonstrates the picking interaction possible using the PickRotateBehavior class. The user
is able to pick a visua object and rotate it with mouse movements. This is in contrast to
MouseRotate?App where the program demonstrates that without picking, the user is constrained as to
which objects are available for interaction.

examples/I nter action/M ouseRotateApp.java

A demonstration of using the MouseRotate class to provide interaction with specific visua objects. The
user is able to rotate the programmer-specified visual object with the mouse. MouseBehaviorApp isamore
complex version of this program providing trandation and zoom interactive capabilities in addition to
rotation. MouseRotate?App demonstrates a limitation of this class.

exampleg/I nter action/M ouseRotate?App.java

A demonsgtration of using the MouseRotate class to provide interaction with specific visual objects. Two
cubes rotate in response to user actions. There is no way to interact with just one of the cubes in this
program. This program intentionally demonstrates the limitation of interaction with this class.
MouseRotateApp is a one cube version of this program.

exampleg/I nter action/Pick Callback App.java

Thisis MousePickApp modified to include a callback from the picking behavior. The user is able to pick a
visual object and rotate it with mouse movements. The simple callback behavior displays a message to the
console. Thisisthe answer to question 6 in the self test section.

exampled/I nter action/SimpleBehavior App.java

A simple behavior class is created and then used in this program. The simple behavior changes a
TransformGroup object in response to key presses. The effect isto rotate a visual object using key strokes.
The program demonstrates behavior usage basics and how to write custom behavior classes.

0.2.5 Animation
examples/Animation/AlphaApp.java

This program illustrates the smoothing possible for the waveform produced by an Alpha object. Three
visual objects are trandated using three Postioninterpolators and three Alpha objects. Only the
IncreasingAlphaRampDuration parameter of the Alpha objects differ among the three car-interpolator-
alpha sets. Refer to Section 5.2 and Figure 5-7 for more information.

The Java 3D Tutorial 0-11

Getting Started with the Java 3D API A. Summary of Example Programs

examples/Animation/Billboar dApp.java

This program illustrates the billboard behavior provided by Billboard Class objects. A Billboard object
orients avisua abject such that it always faces the viewer. The user of this program is free to navigate the
virtual world using the arrow keys. Refer to Section 5.3 for more information on applications and API of
the Billboard Class.

examples/Animation/ClockApp.java

This program uses one Alpha object and one Rotationlnterpolator to rotate an analog clock face once per
minute. The clock face, defined in Cl ock. j ava, is constructed from one Alpha object and two
Rotationinterplotors. The main program, in Cl ockApp. j ava, is a smple example of using a
Rotationlnterpolator. The construction of the clock is somewhat more complex.

examples/Animation/Inter polator App.java

This program illustrates six different interpolator classes in one scene to illustrate the variety of
interpolator classes available.

examples/Animation/LODApp.java

This program uses a Distancel OD object to represent a visual object as one of several different geometric
representations of varying levels of detail. The DistanceLOD object picks one of the geometric
representations based on the distance between the visual object and the viewer.

examples’/Animation/M orphApp.java

In this program, a custom behavior classes animates a stick figure walking based on four GeometryArray
object key frames. Of coursg, to truly appreciate the animations, you have to run the program.

examples/Animation/M orph3App.java

In this program, three other behavior classes create animations based on some, or al, of the

GeometryArray objects of MorphApp. They are called (left to right in the figure) "In Place”, "Tango", and
"Broken". Not al of the animations are good. Of course, to truly appreciate the animations, you have to
run the program.

0.2.6 Light
exampleg/light/LightsNPlanesjava

This program renders a scene where three planes are lit by three different lights. One light is directional,
oneisapoint light, and oneis a spot light. See Figure 6-16.

exampleg/light/LitPlanejava

This program is a basic example of using lights. It renders a scene with a plane and a sphere. See Figure
6-2.

exampleg/light/LitSpherejava

This program is a basic example of using lights. It renders a scene with a single sphere. See Figure 6-15,
among others.

exampleg/light/LitTwist.java

This program demonstrates the lighting of a two sided object (set BackFaceNor mal sFl i p()).See
Figure 6-21.

The Java 3D Tutorial 0-12

Getting Started with the Java 3D API A. Summary of Example Programs

exampleg/light/LightScope.java

This program demonstrates the use of scoping to limit the influence of light sources. See Figure 6-25.

examples/light/L ocalEyeApp.java
This program illustrates the difference between loca eye lighting and infinite eye lighting. See Figure 6-29.

examples/light/ShadowApp.java

This program demonstates SimpleShadow class. SimpleShadow creates shadow polygons for smple visua
objectsin certain scenes. See Figure 6-28.

examples/light/ShininessApp.java

This program renders a static scene of nine spheres with different material properties. The only difference
among the material properties of the spheresis the shininessvalue. See Figure 6-20.

examplegd/light/SpotLightApp.java

This program illustrates the difference various values for the spot light parameters make in rendering. See
Figure 6-18.

0.2.7 Texture

examples/texture/BoundaryColor App

This program loads a single texture image into four Texture2D objects for use with four visua objects.
Each of the four textures are configured with a Boundary Color and different Boundary Mode settings.
The resulting image illustrates the interaction between the Boundary Mode setting in the presence of a
Boundary Color.

examples/texture/BoundaryM odeApp

This program loads a single texture image into four Texture2D objects for use with four visua objects.
Each of the four textures are configured with a different set of Boundary Mode settings (CLAMP or
WRAP). The resulting image illustrates the possible combinations of Boundary Mode setting for a 2D
texture.

examples/texture/M I PmapApp
This program loads a single texture image into a Texture2D object with the MIPmap Mode set to

MULTI_LEVEL. The images for each level (other than the base level) are created at runtime from the
loaded base image by the Texturel oader utility. Compare this program to MIPmapA pp2.

examples/texture/M I PmapApp2

This program loads multiple texture images into a Texture2D object with the MIPmap Mode set to
MULTI_LEVEL. Each image is loaded by the TextureLoader utility. Compare this program to
MIPmapApp.

examples/texture/M I PmapDemo

This program loads multiple texture images into a Texture2D object with the MIPmap Mode set to
MULTI_LEVEL. Eachimage isloaded by the TextureL oader utility. The texture images used distinguish
this application from the typical MIPmap application. The textures are solid color and alternate between
red and green on each level. The resulting image shows how textures from a variety of levels can be used
for asingle visua object.

The Java 3D Tutorial 0-13

Getting Started with the Java 3D API A. Summary of Example Programs

examples/texture/SimpleT extur eApp

This is a very simple example using a texture for a single plane. This application is the result of the
straightforward application of the simple texture recipe presented in Section 7.2. See aso the
TexturedPlaneApp.

examples/texture/SimpleT extureSpinApp

This application takes the SimpleTextureApp one step further and animates the textured plane. It
illustrates the single sided nature of textured objects.

examples/texture/Text2DTextur eApp

A Text2D object (see chapter 3)creates its image using a Texture2D object. This program applies the
texture created by texture Text2D object to another object.

examples/texture/TextureCoor dApp

Each of the four planes in this application is textured with the same texture, but each plane is different.
This program demonstrates some of the alternate orientations a texture may have when applied to a plane.
More texture orientations are demonstrated in TextureRequestApp.

examples/texture/TextureCoor dGenApp

In this program a TexCoordGeneration abject is used to create the texture coordinates at runtime. This
allows the programmer to ignore this detail. It is especialy useful for adding textures to visual objects
loaded from files. Also, the TexCoordGeneration object is capable of creating varying texture coordinates
(in EYE_LINEAR mode) which would hardly be possible otherwise.

examples/texture/TexturedLineApp
This program uses a 1D texture to texture the lines (not the filled polygons) of some geometry. It is an
example of aless common application of textures.

examples/textur e/Textur edPlaneApp

This application is a demondtration of the TexturedPlane class, which is separately compiled. The
difficulty in having a separately compiled class that loads textures lies in using a Texturel oader object
outside of an applet. This smple example shows one way to solve the problem.

examples/texture/TexturedPrimitiveApp
This program demonstrates the use of the texture coordinates created by a primitive geometric object (see
Chapter 2 for adiscussion of geometric primitives).

examples/textur e/TexturedSceneApp
This application generates the image on the cover of this chapter.

examples/textur e/Textur eRequestApp

This program shows some of the possible renderings for a plane using the same texture. The scene is of
four planes that differ only in the assignment of texture coordinate values. One plane is solid blue when
rendered, the others are striped, but none look like the others nor the texture image. The texture
assignments made in this program are examples of possible mistakes while al are legitimate applications.
Thisistheillustration of the phrase "In texturing, you get what you ask for." Other texture orientations are
illustrated in TextureCoordA pp.

The Java 3D Tutorial 0-14

Getting Started with the Java 3D API B. Reference Material

0.3 (Appendix B) Reference M aterial

0.3.1 Books

Henry Sowizral, Kevin Rushforth, and Michael Deering, The Java 3D APl Specification, Addison-
Wedey, Reading, Mass., December 1997. ISBN 0-201-32576-4

This book describes version 1.0 of the Java 3D API. There are some differences between this specification
and the current release of the product. It is comprehensive in coverage, but not intended as a programmer’s
guide.

Itisalso availableonlineat htt p: / /j ava. sun. com product s/ j ava- nedi a/ 3D

It isalso available in Japanese: trandated by Y ukio Andoh, Rika Takeuchi; ISBN 4-7561-3017-8

Ken Arnold and James Goding, The Java Programming Language, Addison-Wedey, Reading, Mass.
The Java reference.

David M. Geary, graphic JAVA Mastering the AWT, Sunsoft Press, 1997
Complete coverage of the AWT.

Foley, vanDam, Feiner, and Hughes, Computer Graphics, Addison-Wedey

This book is widely considered the “bible of computer graphics’. Comprehensive coverage of genera
computer graphics concepts including representation of points, lines, surfaces, and transformations. Other
topics include projection, texturing, z-buffer, and many, many others.

OpenGL ARB, OpenGL Programming Guide, Addison-Wedey

While not directly related, this book provides a good foundation in graphics programming via the OpenGL
API. Java 3D resembles OpenGL in many ways and some implementations of Java 3D are built on an
OpenGL implementation.

0.3.2 TheJava 3D API can be downloaded from the Java 3D Home Page:

http://java. sun. com products/java-nedi a/ 3D/

Follow the "Java 3D Implementation” link to the downl oad. ht m page. Also from this page, you can
download documentation for Java 3D API classes.

0.3.3 Sun Java Web Pages

For additional information, refer to these Sun Microsystems pages on the World Wide Web:

http://java. sun. com products/java-nedi a/ 3D

The Java 3D marketing homepage, this links to many related pages.

http://java. sun.com

The Java Software web site, with the latest information on Java technology, product information, news, and
features.

The Java 3D Tutorial 0-15

Getting Started with the Java 3D API B. Reference Material

http://java. sun. con products/jdk/ 1.2/
JDK 1.2 Product and Download Page

http://java. sun. com docs
Java Platform Documentation provides access to white papers, the Java Tutoria and other documents.

http://devel oper.java. sun. conf
The Java Developer Connection web site. (Free registration required.) Additional technical information,
news, and features; user forums; support information, and much more.

http://java. sun. conl products/
Java Technology Products & API

http://ww. sun. com sol ari s/java/
Java Development Kit for Solaris - Production Release

0.3.4 Other Web Pages

For additional information, refer to the the Java 3D web page for links to related resources.

The Java 3D Tutorial 0-16

Getting Started with the Java 3D API C. Solutions to Selected Questions

0.4 (Appendix C) Solutions To Selected Self Test Questions

Each chapter concludes with a Self Test section containing questions designed to test and increase the
reader’s understanding of the material in that chapter. This section presents answers to some of those
guestions.

Note for questions relating to programming. Asin any programming task, there are many answers possible
to the programming questions. This section only provides one possible programming solution.

0.4.1 Answersto Questionsin Chapter 1

1. Inthe HelloJava3Db program, which combines two rotations in one TransformGroup, what would be
the difference if you reverse the order of the multiplication in the specification of the rotation? Alter
the program to see if your answer is correct. There are only two lines of code to change to make this
change.

Answer:

In genera, the final orientation of an object depends on the
order of rotations applied. There are cases when the order
of rotations will not change the final orientation.

[=5 Hellod ava3Dbalt

To effect the change in the order of application of the
rotations make the following two edits to
HelloJava3Db.,java. Then compile and run the changed
program. Note, if you change the name of the file, you
also need to change the name of the high level class in the
file For example, if you change the file to
HelloJava3Dbalt.java, then class HelloJava3Db must be
changed to HelloJava3Dbalt, aong with the name of the
constructor and the call to the constructor. Of course, the
comments should change to reflect programming changes.
Change:
rotate. mul (tenpRotate);

to:

tenpRot ate. nul (rotate);
Change:

Transform& oup obj Rotate = new Transform& oup(rotate);
tor

Transf orm& oup obj Rotate new Transf or m& oup(tenpRot at e) ;

After making these changes, compiling, and running the program, the above image at the is produced. If

you compare this image to Figure 1-12 in Chapter 1, you can see the difference changing the order of
rotations made in this program.

The Java 3D Tutorial 0-17

Getting Started with the Java 3D API C. Solutions to Selected Questions

2. Inthe HelloJava3Dd program, what would be the difference if you reverse the order of the Transform
Nodes above the ColorCube in the content branch graph? Alter the program to see if your answer is
correct.

Answer:
Asin the previous program, the change in order does make a difference. Also asin the first question, only
two lines of code need be edited to test the results of the change the question asks abouit.

3. In search of performance improvements, a programmer might want to make the scene graph smaller.
Can you combine the rotation and the spin target transform of HelloJava3Dd into one TransformGroup
object?

Answer:
It can be done; however, it is not worth the effort. Unless a change in the scene graph results in fewer
Shape3D objects, it does not make sense to make the program harder to write, read, and maintain.

4. Trandate the ColorCube 1 unit in the Y dimension and rotate the cube. Y ou can use HelloJava3Db as
a dtarting point. The code that follows the question shows the specification of a trandation
transformation. Try the transformation in the opposite order. Do you expect to see a difference in the
results? If so, why? If not, why not? Try it and compare your expectations to the actual results.

TransfornB8D transl ate = new TransfornBD();
Vect or 3f vector = new Vector3f(0.0f, 1.0f, 0.0f);
transl ate. set Transl ati on(vector);

Answer:
The order of transformations does make a difference.

5. In HelloJava3Dc, the bounding sphere has a radius of 1 meter. |s this value larger or smaller than it
needs to be? What is the smallest value that would guarantees the cube be rotating if it isin view?
Experiment with the program to verify your answers. The following line of code can be used to specify
abounding sphere. In thisline, the center is specified using the Point3D object followed by the radius.

Boundi ngSphere bounds =
new Boundi ngSpher e(new Poi nt 3d(0.0,0.0,0.0), 100.0);

Answer:
The BoundingSphere only needs aradius of 0.8 (0.4 * 2.0). The center should be (0, 0, 0). The location of
the BoundingSphere will be transformed by any TransformGroup objects above it in its scene graph path.

The Java 3D Tutorial 0-18

Getting Started with the Java 3D API C. Solutions to Selected Questions

6. The example programs give sufficient information for assembling a virtual universe with multiple color
cubes. How do you construct such a scene graph? In what part of the code would this be
accomplished?

Answer:
There are many ways to add a new visible object to avirtual universe. Some possibilities include:
Add a ColorCube object as a child of the existing BranchGroup.

Add a ColorCube abject as a child of a new BranchGroup and adding this BranchGroup to the Locale
of the SimpleUniverse.

Add a ColorCube object as a child of the existing TransformGroup. Note that since two ColorCube
objects will coincide, only one will be visible.

Add a ColorCube object as a child of a new TransformGroup object and making the new
TransformGroup a child of the Locale of the SimpleUniverse.

Combinations of the above possihilities.

A ColorCube object can not be added as the child of the Locale object.

0.4.2 Answersto Questionsin Chapter 2

1. Try your hand a creating a new yo-yo using two cylinders instead of two cones. Using
ConeY oyoApp.java as a starting point, what changes are needed?

Answer:
All that is needed is to replace the Cone objects with Cylinder objects.

2. A two-cylinder yo-yo can be created with two quad-strip objects and four triangle-fan objects. Another
way is to reuse one quad-strip and one triangle fan. What objects would form this yo-yo visua object?
The same approach can be used to create the cone yo-yo. What object would form this yo-yo visua
object?

Answer:

In each of the solutions, the visual object can be defined by one Group with two TransformGroup objects,
each with a Shape3D child. Each of the Shape3D objects refers to the same Geometry NodeComponent.

The Java 3D Tutorial 0-19

Getting Started with the Java 3D API C. Solutions to Selected Questions

3. The default culling mode is used in YoyoLineApp.java and YoyoPointApp.java. Change either, or
both, of these programs to cull nothing, then compile and run the modified program. What difference
do you see?

Answer:
With the default, the lines (or points) are culled from back faces. Turning culling off allows al lines
(points) to be rendered in al orientations. If you haven't already, try culling front faces.

0.4.3 Answersto Questionsin Chapter 3

1. Usingthe Geoml nf oApp. j ava example program as a starting point, try the various settings for ear
clipping (see the Triangulator reference block in Chapter 3). Using the wire frame view in the
program, you can see the effect of the triangulation. For more experience, change the specification of
the polygons to use three polygons (one for each side, and one for the roof, hood, trunk lid and other
surfaces. How does the Triangulator do with this surface?

Answer:

The code for the single polygon description of the hood, roof, trunk, and front and rear glass is embedded
in the application code. See the source code for more details. However, there are three other lines of code
that must be changed to use this aternative polygon.

Unfortunately, the Triangulator does not triangulate this polygon correctly. You might try breaking the one
large polygon into smaller onesto see what works. The lesson here isyou till have to give some thought to
how surfaces are described, even when using GeometryInfo.

2. The code to make the Text2D object visible from both sidesisincluded in Text 2DApp. j ava. You
can uncomment the code, recompile and run it. Other experiments with this program include using the
texture from the Text2D object on other visual objects. For example, try adding a geometric primitive
and apply the texture to that object. Of course, you may want to wait until you read Chapter 7 for this
exercise.

Answer:
The code to make the Text2D object visble from both sides is embedded in the comments of the
Text2DApp.java example program. See the source code file for more information.

3. Using Text 3DApp. j ava as a starting point, experiment with the various aignment and path
settings. Other experiments include changing the appearance of the Text3D object.

Answer:

Just try some difference settings and observe the results.

4. Playing with the Backgr oundApp. j ava example program, if you move far enough away from the
origin of the virtual world the background disappears. Why does this happen? If you add another
Background object to the BackgroundApp, what will the effect be?

Answer:

The application of a background is controlled by the ApplicationBounds (or ApplicationBoundingLeaf) for
the background. In the example program, the background has an ApplicationBounds sphere centered at the
origin with aradius of 10,000.

The Java 3D Tutorial 0-20

Getting Started with the Java 3D API C. Solutions to Selected Questions

If another background were added, the effect would depend on the ApplicationBounds specified for the new
background. In any case, only one background is rendered at a time for any scene. The selection of the
background depends on the ApplicationBounds and the position of the viewer in the virtual world.

0.4.4 Answersto Questionsin Chapter 4

1. Write a custom behavior application that moves visual objects to the left (and right) when a the left (and
right) arrow keys are pressed. Then use the class in an application similar to SimpleBehaviorApp.java
Of course, you can use SimpleBehaviorApp.java as a starting point for both the custom behavior class
and the application. What happens as the ColorCube object moves out of the view? How do you fix the
problem?

Answer:

When the cube moves a sufficient distance, the behavior scheduling bounds no longer coincides with the
visua object. Since the bounds object is associated with the behavior, and the behavior is not moving with
the visual object, they will eventually be separated to the point where the behavior is only active when the
cube is not visible. Conversely, the behavior will be inactive when the cube is visble. So, if you add
navigational capabilities to the program, seeing the cube will not necessarily mean you can interact with it.

There is more than one way to change the program so that the position of the cube and the scheduling
bounds of the behavior coincide. One way is to the make the behavior a child of the transform group object
that is moving the visual object. Another way involves using a BoundingLeaf object. See Chapter 3 for
more information on the BoundingL eaf class.

2. In SimpleBehaviorApp, the rotation is computed using a angle variable of type double. The angle
variable is used to set the rotation of a Transform3D object which sets the transform of the
TransformGroup. An dternative would eiminate the angle variable using only a Transform3D object
to control the angle increment. There are two variations on this approach, one would read the current
transform of the TransformGroup and then multiply, another would store the transform in a local
Transform3D object. In either case, the new rotation is found by multiplying the previous Transform3D
with the Transform3D that holds the rotation increment. What problem may occur with this aternative?
What improvement can be made to this approach?

Answer:

Successive rotations (or transformations of any type) can be implemented using successive multiplication
of transforms. The problem liesin the loss of precision through the repeated multiplications. It takes many
iterations, but eventually the error will accumulate and result in strange effects in the renderings.

3. Change the trigger condition in the SimpleBehavior class to new El apsedFr ame(0) . Compile and
run the modified program. Notice the result. Change the code to remove the memory burn problem
from the class. Then recompile and run the fixed program.

Answer:
The program will trigger on each frame (and therefore is now an animation application). Asaresult, anew
object is created on each frame. Since objects are being created at a fairly quick rate and not being reused,
this is a case of memory burn. The rendering will pause when the garbage collector activates to clean up
memory.

4. Change the scheduling bounds for the KeyNavigatorBehavior object to something smaler (eg., a
bounding sphere with a radius of 10), then run the application again. What happens when you move
beyond the new bounds? Convert the scheduling bounds for KeyNavigatorApp to a universa
application so that you can't get stuck at the edge of the world. See Chapter 3 for more information on
BoudingL eaf nodes.

The Java 3D Tutorial 0-21

Getting Started with the Java 3D API C. Solutions to Selected Questions

Answer:

When the viewer moves beyond the scheduling bounds, the navigation behavior becomes inactive and
therefore can no longer respond to keystrokes (or any other trigger). The viewer becomes stuck and must
exit the program.

5. Use the KeyNavigatorBehavior with a TransformGroup above a visua object in the content branch
graph. What is the effect?

Answer:
The effect is to move the visua object, not the viewer. The action is backward from the normal application
of this behavior.

6. Extend the picking behavior in the MousePickApp by providing a callback. You can start by smply
producing a text string ("picking") to the console. You can aso get more ambitious and read the user
data from the target transform group or report the trandation and/or rotations of the target transform
group. With the proper capabilities, you can aso access the children of the TransformGroup object.

Answer:
Seeexanpl es/ I nteracti on/ Pi cki ngCal | backApp. j ava.

0.4.5 Answersto Questionsin Chapter 5

1. The InterpolatorApp example program uses six different interpolator objects. Each of the interpolator
objects refers to the same Alpha object. The result isto coordinate al the interpolators. What would be
the result if each interpolator object had its own Alphaobject? How could you change the timing?

Answer:

If each interpolator used a different Alpha object the interpolators would al be synchronized anyway.
Each Alpha object is assigned the same start time when it is created. If you wanted the Alpha objects to be
out of phase, either change the start time or assign a phase delay duration.

2. If the light in InterpolatorApp is changed to Vect or 3f (- 0. 7f, - 0. 7f, 0. Of) what happens?
Why?

Answer:

The body of the car disappears, however, the wheels are ill visible and are changing colors as before.
Why do the different parts of the car render differently? If you change the background to a different color,
you will see the body of the car is ill there but it is solid white. This is the result of complete specular
reflection from the body of the car. The combination of the direction of the light and the normals of the car
body reflect the light source as a mirror does. This is truly a problem for chapter six, but is a potential
head-scratcher for readers of chapter five.

3. Why are there fewer distances than visual objects specified for a Distancel. OD object?

Answer:
By design the threshold to begin to use the first child of the target switch object(s) is zero. Thisthresholdis
not specified by the user. The threshold distances specified by the user are the minimum distances at which
the remaining children are to be used. Therefore, there are one fewer distances specified than there are
children.

4. In MorphApp there are four frames of which two look like duplicates of the other two. Why are four
frames necessary? Asked another way, what would the animation look like with just two frames?

Answer:
Since Morph animates between frames based on vertex ordering, with just two frames the animation would

The Java 3D Tutorial 0-22

Getting Started with the Java 3D API C. Solutions to Selected Questions

just move back and forth between the two frames. Since the 'feet’ of the animation never appear in the
same place in one key frame, four frames are necessary. The difference between the frames that appear the
same is the vertex ordering. It would be possible to animate walking with two frames if in one of the
frames one foot is behind the other (from the viewer's point of view). Of course, thiswould only work with
2D models.

5. In using a morph object, the same number of vertices are used. How can you accommodate geometric
models of differing numbers of vertices?

Answer:
In the geometry with the smaller number of vertices the vertex count must be increased to match that of the
larger geometry. The new vertices can be redundant or internal to a surface.

0.4.6 Answersto Questionsin Chapter 6

1. Add agreen DirectionalLight pointing up to the Li t Spher eApp to illustrate additive color mixing
with al three primary colors. Don't forget to add the light to the scene graph and set the influencing
bounds for the new light source object. Which two primary colors make yellow?

Answer:

In the positive color system, green and red combine (add) to yield yellow. Thisis not the result of mixing

green and red paint, but green and red light. Mixing red and green paint will likely result in some shade of

brown (depending on the characteristics of the paint).

2. To learn more about the interaction between material colors and light colors, create a scene with red,
green, and blue visua objects. Light the objects with one single color light. What did you see? You
may use LitSpereApp.java or Material App.java as a starting point.

Answer:

In monochromatic light (pure red, green, or blue) only visua objects with material color with some of the

color of the light are visible. By contrast, in monochromatic light, visual objects with material color absent

of the color of thelight areinvisible.

The results you get from your program will depend on your program. If you only set the diffuse color of
the visual objects, then the specular highlight will appear in the color of the light (which by default is
white).

3. Using LightScopeApp.java as a starting point (see Section 6.6.2), change the program to create the
shadow of the lit box through the use of scoping only.

Answer:

An additiona group node is necessary. It is placed between the litBoxTG and the litBox object. They the

scope references that new group node. Y ou aso need to change the material diffuse color to white.

The image rendered from the scene is different since the shadow islit by the other lights in the scene.

0.4.7 Answersto Questionsin Chapter 7

1. What happens if atexture coordinate assgnment is not made for a vertex in some geometry? Is there
an exception? A warning? Doesit render? If it renders, what is the result?

Answer:
In the event a texture coordinate assgnment is not made for one or more vertices, the texture coordinate is
the default value for texture coordinates (0,0), or (0,0,0) for 3D. There is no exception or warning. The

The Java 3D Tutorial 0-23

Getting Started with the Java 3D API C. Solutions to Selected Questions

resulting render is the same as if the default value for a texture coordinate had been made for the vertex
(vertices).

2. How can a single image of atexture (not repeated) be mapped onto a visual object and have the image
surrounded by a single solid color? Assume the texture image is the typica non-solid-color image.
How could the surrounding color be assigned or modified at runtime?

Answer:

The CLAMP Boundary Mode it used to apply a single image of a texture to a visual object. One way to

have the object appear with a solid color border is to create the texture image with a single texel border

with the desired border color. In REPLACE texture mode the border color will be used everywhere beyond
the texture application. When a linear filter is used and the Boundary Mode is CLAMP, the Boundary

Color (default: black) will be used. In this case you will probably need to set the boundary color to white.

Keep in mind that the entire texture image is still subject to the size constraints.

Another way to apply a single image of a texture with a solid color border is to create the texture image

with a single texel border that is transparent. In DECAL texture mode the visual object will provide the

color beyond the texture image.

Neither of these approaches alows for a changing border color — at least not easily changed. To have a

dynamic border color, or just one assigned at runtime, use the same technique as the first solution above:

Boundary Mode CLAMP, and linear texture filters. Make a one texel while border color around the

texture and apply a boundary color. If the boundary color isto change after the visual object is live, make

sure the appropriate capability is set.

3. How can multiple textures be applied to a single visual object? How can you apply different textures
to the opposite sides of the same visua object? How can you apply different textures to the lines and
the surfaces of a polygon?

Answer:

A visua object can have only one texture. So if you want to use more than one texture on what appears as

asingle visua object, then it must be created of multiple visual object with the various textures.

4. How would you animate a shadow that moves across a stationary visua object as the shadow moves?
Answer:

A texture can be animated in certain limited ways (stretching, rotating, moving) by changing the texture
transform for the visual object. With the appropriate capability set such that the texture transform can be
changed at runtime, a texture that represents the shadow can be moved, made larger or smaller, or rotated
on avisua object.

5. How would you animate a shadow that moves across a visua object as the object passes through a
stationary shadow?

Answer:

The solution to question four can be used, however this would require coordination of the object's
movement with the movement of the texture. There is (at least) one other way. A TexCoordGeneration
object with EYE_LINEAR generation mode assigns texture coordinates that are stationary in the virtual
space. Using a TexCoordGeneration object configured in this way would make the texture stationary even
as the object moved through the virtual space.

The Java 3D Tutorial 0-24

Getting Started with the Java 3D API

0.5 Glossary

A

activation volume

active

aliasing

alpha

Alphaclass

alphavaue

ambient (material) color

ambient light

ambient reflection

ancestors (of an object)

animation

The Java 3D Tutorial

Glossary

A volume associated with a ViewPlatform Node. When the activation
volume intersects application regions and scheduling regions, the objects
associated with the intersecting regions affect rendering. The affecte objects
include backgrounds, behaviors, and fog. See aso ViewPlatform,
application bounds, and scheduling bounds.

Said of abehavior object that is able to receive awakeup stimulus and
therefore execute. A behavior object is active when it's scheduling bounds
intersects a ViewPlatform's activation volume. When a behavior is not
active, Java 3D will ignore the wakeup criteriafor that behavior. See aso
activation volume and behavior.

The appearance of jaggiesin lines and curves. The result of sampling the a
continuous function. See also jaggies and antialiasing.

In computer graphics, the term ‘alpha normally refersto transparency. In
Java 3D alpha aso refersto transparency, but may also refer to the Alpha
class, or an aphavaue. This may be asource of confusion for experienced
graphics programmers. See aso Alpha class, alpha value, RGBA, and
transparency.

An Alpha class object creates atime-varying function of alpha values.
Normally, and Alpha object is used with Interpolator objects to create time-
based animations. See aso alpha value, animation and interaction.

A valuein therange 0.0 to 1.0, inclusive. Alphavalues are used in various
capacitiesin Java 3D (e.g., transparency value or Interpolator behavior
objects). Time varying alpha values are produced by Alpha objects. See
also Alpha Class, behavior, and interpolator.

Part of the material properties of avisual object. The ambient color of a
material and the ambient light in scene produce an ambient reflection.

A light source present in al places shining in dl directions used to model the
complex inter-object reflections (repeated reflection of light from one object
to another) present in the real world. See also ambient color.

The light produced by an ambient light source reflected from a visual object
with material appearance attributes. The result depends on the ambient
color of the object and the color of the ambient light source. See ambient
color, ambient light, and lighting model.

All of the objects in a scene graph that are children of a specific object and
all of the childrens’ ancestors. See also object, scene graph, and parent-
child relationship.

The automatic change of visual content (e.g., changes based on time aone).
In this tutorial, animations are driven by the passage of time, changes of the

0-25

Getting Started with the Java 3D API Glossary

antialiasing

APl

Appearance class

application bounds

Application Programming
Interface

Attributes classes

base level

billboard

Behavior class

behavior

bounding volume

Bounds class

The Java 3D Tutorial

view platform location, and possibly other non-user action influences.
Animation is the subject of Chapter 5. See aso interaction.

A process of smoothing the drawing of points or lines that would otherwise
appear jagged. See also jaggies, line antialiasing and point antialiasing.

see Application Programming Interface

Instances of Appearance define the appearance of a Shape3D object.
Appearance objects include AppearanceAttribute objects. See also
AppearanceAttributes and Shape3D.

The region for which something is applied. Backgrounds and Behaviors
have application bounds. For example, when the viewing frustum intersects
the application bounds of a particular background, that background is used
in rendering. See aso bounds.

(API) Genera term referring to a collection of classes (or procedures) that
form the programming interface to some computer system. The Java 3D
AP classes form the programmers interface to the Java 3D renderer.

Instances of Attributes define specific appearance attributes of a Shape3D
object. There are several Attributes classes. Appearance objects include
Attribute objects. See also Appearance class and Shape3D.

Level O of atexture. Base level isthe only level of atexture unlessthe
Mipmap Mode isset to MULTI_LEVEL. Baselevel aso refersto asingle
level texture as opposed to amultiple level texture. In amultiple level
texture base level, level O, isthe largest texture image. See aso texture
mapping and multiple levels of texture.

Automatic orientation of a polygon in an orthogonal orientation to the
viewer such that only the front face of the polygon isviewed. Typicaly the
polygon is textured with an image.

A javax.mediaj3d class used to specify how some characteristic, such as
location, orientaion, or size, changes at runtime. Behavior classes are used
in creating animations as well as interactive programs. See also behavior,
Interpolator, and Alpha class.

The changing of some characteristic, such as location, orientation, size,
color, or acombination of these, of avisual object a run time. A behavior
is either an animation or an interaction. See also Behavior class.

A volume that defines the limits for which something is defined. Bounds are
used with behaviors, lights, sounds, and other features of Java 3D. Bounds
are defined in a program with the Bounds class. When the See aso Bounds
class and scheduling region.

An abstract class to specify a bounding volume for which something is
defined. Bounds are used with behaviors, backgrounds, sounds, and other
features of Java 3D. Bounds can be specified with a BoundingBox,
BoundingSphere or a BoundingPolytope. See aso bounding volume,
polytope, and scheduling region.

0-26

Getting Started with the Java 3D API

bounds

BoundingBox class

BoundingSphere class

branch graph

BranchGroup class

C
capabilities

CLAMP

class

Color* classes

Color3* classes

Color4d* classes

compile

concentration

content

content branch graph

convenience class

The Java 3D Tutorial

Glossary

See bounding volume and Bounds class.

Instances of BoundingBox define bounds as a axis-aligned box. See also
bounding volume.

Instances of BoundingSphere define bounds as a sphere. See also bounding
volume.

That portion of the scene graph rooted in a BranchGroup object. See also:
BranchGroup, scene graph, content branch graph, and view branch graph.

Instances of BranchGroup are the root of individual scene graph branches,
called branch graphs. A BranchGroup may have many children that are
Group and/or Leaf objects. A BranchGroup isthe only object that may be
inserted into a Locale object. See also scene graph, branch graph, and
Locale.

In the Java 3D sense, access to the parameters of alive object are controlled
with capabilities. For example, atransform of alive TransformGroup can
not be changed unless the capability to do so was set for that instance of
TransformGroup before it was made live. See also live and
TransformGroup.

One of the Boundary Modes available in texture mapping. Clamps texture
coordinates to bein the range [0, 1]. See also texture mapping.

The specification of a set of values and a set of operations. A classis
analogous to atype in a procedural language such as C. See also object.

A set of classes used to represent a single color value. The classes are
Color3b, Color3f, Color4db, and Color4f.

A set of classes used to represent a single RGB color value. The classes are
Color3b and Color3f. See aso Color* and RGB.

A set of classes used to represent asingle RGBA color value. The classes
are Color4b and Color4f. See aso Color* and RGBA.

In the Java 3D sense, conpi | e() isamethod of BranchGroup to allow
Java 3D to make run-time performance improvements in the branch graph
rooted on the BranchGroup. See also BranchGroup and branch graph.

A parameter of spot light objects that determines the spread of light from the
light source. See also spot light.

The visud (including shape and lights) and audio objects of a virtual
universe. See aso visual object.

The portion of the scene graph that contains the visual objects. See also
content and visual object.

A classthat extends a core class for the purpose of making a core class (or
classes) easier to use. Convenience classes are found in the com.sun.j3d.*
packages.

0-27

Getting Started with the Java 3D API Glossary

crease angle

cull

cull face

D
DAG
deactivation

diffuse reflection

directed acyclic graph

E

emissive (material) color

exanpl es. jar

exception

execution culling

eye vector

The Java 3D Tutorial

The threshold angle between the surfaces of adjacent trianglesin a surface
for which it is taken to be a discontinuous crease. When a crease is detected
by the Normal Generator it produces multiple normals for vertices.

To remove something not valuable or not needed. See aso cull face.

The face that is not to be rendered. A cull face is specified to avoid
rendering aface that is not needed, for example, the interior face of an
enclosed surface. Cull faces are specified as either front face or back face.
A cull face is specified to improve rendering performance. See aso front
face.

See Directed Acyclic Graph

When a behavior's scheduling region and the ViewPlatform's activation
volume no longer intersect, the behavior is deactivated. Since a behavior
can only be triggered when active, a deactivated behavior object will not do
anything. See also active and behavior.

The most common reflection of light from visual objects present in the real
world. The diffuse color isthe color of an object in typical lighting
conditions. See aso lighting model.

A data structure composed of elements and directed arcs in which no cycles
areformed. Inthe Java 3D world, the elements of the DAG are Group and
Leaf objects, and the arcs are the parent/child relationships between Groups
and Lesf objects. In forming the structure without cycles means no element
can beits own parent.

A color specified to make an object self illuminating. The object isnot a
light source and does not lit other object, but is visible in the absence of light
sources. See also material properties.

The archive of example programs published with this tutorial. See aso jar.

An expected runtime problem that halts execution when detected. The Java
3D API defines several exceptions.

Since computational resources are shared for rendering and behavior
execution; some (or all) computational resources are not available for
rendering while behaviors are executed. This could degrade rendering
performance when executing behavior objects. Therefore, Java 3D ignores
behaviors when they are not active to conserve execution resources. Thisis
termed execution culling since execution of deactivated behavior objectsis
culled. See also active and behavior.

The vector between a vertex (to be shaded) and the viewing position. This
vector is used in calculating the specular reflection of an object. See also
specular reflection, local eye, and infinite eye.

0-28

Getting Started with the Java 3D API Glossary

F
flat shading

font

front face

frustum

G
get* or get-method

Geometry classes

glyph
Gouraud shading

Group class

H
half-space

I
image plate

image observer

infinite eye (lighting)

influence (of alight)

Shading an object with the colors of each vector without interpolation. See
also shading model.

The collection of glyphs for the alphabet. A typeface at a specific point size
and attributes (i.e., italics or bold). See aso glyph and typeface.

The face of a polygon for which the vertices are in counter-clockwise order.
An easy way to remember isto apply the right-hand rule. See also right-
hand rule and cull face.

see view frustum

A method of aclass that retrieves afield or value from an object. See aso
ﬁ*

The abstract class that is the super class for all geometric primitive classes
such as GeometryArray, and Text3D.

The image of acharacter in afont. See also font and typeface.

Smooth shading of an object through trilinear interpolation of color values
at the object's vertices. See also flat shading, trilinear interpolation.

Group is an abstract class. Instances of subclasses Group are used in
creating scene graphs. A Group is a scene graph object whose primary
function is to be the parent of other scene graph objects (Leaf objects and
other Group objects. See also BranchGroup and TransformGroup.

The space on one side of aplane. A plane divides al of space in two haves,
one half on each side of the plane. See also plane.

The imaginary rectangle in the virtua universe to which the sceneis
projected. See Figure 1-9 for an illustration. See aso view frustum.

An object that implements the image observer interface which allowsit to
monitor the loading of images from afile or URL.

Rendering an scene as though it were viewed from a position at infinity.
The actual effect isto have a constant eye vector (0, 0, 1). This reduces
rendering time, but may look 'funny' due to the placement of specular
reflections. Infinite eye lighting is the default. See also lighting model,
specular reflection, eye vector, and local eye (lighting).

The region (volume) for which the bounding volume of avisua object must
intersect for the visual object to be lit by the light source. See also bounds.

influencing bounds (of alight) See influence (of a light).

instance (of a class)

The Java 3D Tutorial

Aninstance of aclassis a specific, individual object constructed of the
named class.

0-29

Getting Started with the Java 3D API Glossary

intensity

interaction

interface

interpolator

interpolation

Java 2D

jaggies

jar

K
K Computing

key frame

L
level of detail (LOD)

The Java 3D Tutorial

A single value that represents the perceived brightness of alight source.
Also used as a setting for a texture image that has a single value for each
texel which istaken asthevauefor R, G, B, and A.

Changing the state of a virtual world in response to user action. Thisisin
contrast to animation which is defined as a change in the state of the virtual
world not directly caused by user action. Interaction is the subject of
Chapter 4. See also animation.

Like an abstract class, an interface defines methods to be implemented by
other classes. No constructor is defined in an interface and al of the
methods defined in an interface are abstract.

Refers to one of several classes subclassed from the Interpolator class, or an
object of one of these classes. Interpolator objects provide animation in the
Java 3D virtual world by varying some parameter(s) of atarget scene graph
object. The changes made by the interpolator are determined by the
parameters of the interpolator and the Alpha object driving the interpolator.
See aso Alpha Class, behavior, and target object.

The computation of avalue, or set of values, based on the value of asingle
integer. Sometimes the derived value is interpolated between two values, or
two sets of values; other times, the derived value is the result of aformula
Specifically, there are a set of interpolator classes useful for animation.
See Section 4.1 and Chapter 5 for more detalls.

An APl for 2D graphics.

The technical term for the roughness that may appear on points, lines, or
polygons when rendered. The roughness appears when the individua pixels
used stand out. See aso antialiasing.

1. An archive file format useful for distributing a collection of files.
2. The utility that creates and reads such archive files (Java ARchive).

The training and consulting company that developed this tutorial document.
Seedsohttp://ww. kconputi ng. com

A term used in traditional and computer animation for aframe of the
animation on which others are based. The process of creating framesin
between the key frames is called "in-betweening”. Animations made from
key frames and in-betweening are called key frame animations. A Morph
object can be used to do key frame animations in Java 3D.

Level of detail (LOD) refers to an application specific behavior that changes
the representation of a visua object based on its distance (normally) to the
viewer. When the LOD object is close to the viewer, more detailed
representations are used. Less detailed representations are used with more
distance. The god isto reduce the rendering computation without degrading
rendered imagery. See Section 4.1 and Chapter 5 for more details.

0-30

Getting Started with the Java 3D API Glossary

light vector

lighting modéel

line antidiasing

live

|oader

local eye (lighting)

Locale class

luminance

M
magnification filter

material properties

memory burn

The Java 3D Tutorial

The vector between alight source and the vertex being shaded. Seedso
lighting model.

The calculation of the color (shade) of a specific vertex of avisual object as
the result of influencing light sources and the material properties of the
visual object. The shade isthe result of ambient, diffuse, and specular
reflections as well as the emissive color of the material. See aso ambient
reflection, diffuse reflection, specular reflection, and material properties.

An appearance attribute that, when enabled, causes the renderer to apply
antialiasing to lines as they are rendered. See also antialiasing and render.

The term ‘live’ refers to the state of a SceneGraphObject being associated
with arendering engine. In other words, alive object is amember of a
branch graph associated with a Locale which isamember of a
VirtuaUniverse that has a View attached (through a Locale object) and,
therefore, has the potential to be rendered. Live objects have restricted
capabilities. See also render, SceneGraphObject, branch graph, Locale
class, VirtualUniverse class, scene graph, and capabilities.

A Java 3D utility class that creates scene graph elements from afile.
Loaders exist for many common 3D file formats.

Rendering an scene as though it were viewed from the local eye position - as
opposed to the default infinite eye. This increases rendering time. Infinite
eye lighting is the default. See also lighting model, specular reflection, eye
vector, and infinite eye (lighting).

Instances of Locale provide landmarks in the virtual universe. The position
of al visual objectsisrelative to some Locale object. Locale objects are the
only object VirtualUniverse objects reference. BranchGroup objects are the
only children of aLocae object. See also BranchGroup, VirtualUniverse
class, visual object, and branch graph.

A single value that represents the perceived brightness for a surface. Also
used as a setting for a texture image that has a two values for each texel
where one value is taken as the value for R, G and B and the other valueis
used for apha

A filter used in texture mapping when the pixel sizeislarger than the texel
Size. See also texture mapping and texel.

The specification of the ambient, diffuse, specular, and emissive colors, and
concentration of amaterial used in calculating the shade of an object. The
first three colors are used in calculating the appropriate reflection. See also
ambient reflection, diffuse reflection, specular reflection, lighting model,
and shade.

The rate of memory allocation and garbage collection as an application
runs. Thisistypically due to unnecessarily creating and destroying objects.
Memory burn can adversely affect rendering performance in some runtime
environments. Avoid memory burn in behaviors.

0-31

Getting Started with the Java 3D API Glossary

minification filter

MIP Map

multi level texturing

multiple levels of texture

N

normal

normal vector
O

object

object of change

P
pick
picking

pick ray

pixel

plane

The Java 3D Tutorial

A filter used in texture mapping when the pixel size is smaller than the texel
size. See also texture mapping and texel.

MIP (multumin parvo — Latin for many thingsin asmall place) Map 1.
Refers to a specific storage technique for storing a series of images for multi
level texturing, where each successive image is one quarter the size of the
next (Y2 the sizein each dimension) until the size of the smallest imageis 1
texel by 1 texel [See Williams, SGGRAPH 1983].

2. The common use of the term means "multi level texturing”. See Chapter
7. See also texture mapping, multiple levels of texture, and texel.

See multiple levels of texture.

Having a series of texture images at various resolutions available so that the
rendering system can select the texture map of a size that is the closest
match to the visual object being rendered. See Chapter 7. See also texture

mapping and MIPmap.

A vector that defines the surface orientation. In Java 3D normals are
associated with coordinate points in geometry. See also Geometry.

Seenormal.

Aninstantiation of aclass. See also class and visual object.

The scene graph object that is changed by a behavior and through which the
behavior affects the virtual world. For example, a TransformGroup object
is often the object of change for interactive behaviors. See Section 4.2 for
more information.

To select an object with the mouse. See a'so picking.

To select avisua object for interaction with the mouse. Picking is
implemented in Java 3D through behaviors. See Chapter 4 for more
information on Behaviors, Picking, and example programs utilizing picking
classes. See also behavior.

A pick ray isaray whose end point is the mouse location and direction is
paralle to the projection (paralld with projectors). In many picking
applications, the pick ray isused in picking an object for interaction. Also,
Pi ckRay isasubclass of Pi ckShape. Seethe appropriate reference
block or API reference for the class. See a'so picking.

Anindividua picture element of the display. Each pixel is addressable by
an [x, y] coordinate and assigned asingle color. In Java 3D, programs do
not typically address individual pixels, instead 3D elements are rasterized.
See dso rasterize.

A flat surface extending infinitely in al directions. The orientation of a
planeis normally expressed as a surface normal. A plane can be uniquely
defined by a single point and a normal vector.

0-32

Getting Started with the Java 3D API Glossary

plane equation

Point* classes

point antialiasing

polytope
processStimulus

project

projector

Q
quad

guaternion

R
raster

rasterize

ray tracing

render
renderer
RGB
RGBA

The Java 3D Tutorial

A planeis uniquely specified by a4-tuple. The first three values represent
the surface normal vector for the plane. The fourth value specifies the
distance from the origin to the plane along a vector paralée to the plane's
surface normal vector.

Point* refersto one, or al, of a number of classes used to represent points
in Java3D. Consult areference for Point2f, Point3f, Point3d, ... classes.

An appearance attribute that, when enabled, causes the renderer to apply
antialiasing to points as they are rendered, causing the points to look less
jagged. See also antialiasing, render, and jaggies.

A bounding volume defined by a closed intersection of half-spaces.

A method of Behavior. The processStimulus method is called by Java 3D
when the appropriate trigger condition has occurred. It isthrough this
method that the behavior object responds to the trigger. See Chapter 4 for
more information. See aso behavior and wakeup condition.

To express the world coordinate geometry of 3D objectsin 2D image plate
space.

Thelines that correlate the vertices of a 3D object in world coordinate space
with the pixelsin image plate space. A straight line drawn between a 3D
vertex and the viewpoint (viewer's eye) is a projector and determines the
pixel(s) the vertex will rasterize to.

Short for quadrilateral. A four sided polygon.

A quaternion is defined using four floating point values [x y zw|. A
guaternion specifies rotation in four dimensions.

The per-pixel memory of the display hardware.

To convert visua objects and their components to their projected images.
The term comes from the use of araster display device on virtualy all
common computers.

Applications which render scenes by modeling individua rays of light.
These applications can model inter-object effects such as shadows but are
not fast enough for real time rendering.

To produce the image represented by the scene graph.
Software to produce the image from a scene graph.
Red, Green, and Blue, the three components used to represent color.

Red, Green, Blue, and Alpha, the three components used to represent color
with atransparency value.

0-33

Getting Started with the Java 3D API Glossary

right-hand rule

scale

scanline

scanline order

scene graph

scene graph path

scheduling bounds

scheduling bounding leaf

scheduling region
scope (of alight)

Sensor

set* or set-method
shade

The Java 3D Tutorial

"Right-hand rule' refers to the corrdation between the

direction the fingers curl and the direction the thumb points

on your right hand. The right-hand rule applies in

determining the front face of a polygon, when computing

a cross product of vectors, and when figuring out 0
which way to turn right-handed nuts, bolts, and screws. The figure at the
right shows the fingers of the right hand curling in the order in which the
vertex coordinates were defined for atriangle. The thumb, pointing up (out
of the page), indicates we are seeing the front face of the triangle. See also
front face and culling.

To change the shape of avisual object by transforming each of the vertices
of the object. The shape of the visual object can be preserved or distorted
depending on the scale transform. See also transform.

A single row of pixels of the output device.

The ordering of pixels of awindow taken left to right and top to bottom —
like the order of characters are read (in English). This order is normally
used in rendering pixels.

The Java 3D data structure that specifies the visual objects and viewing
parametersin avirtual universe.

The path from alocale object, or an interior node, to aleaf of the scene
graph. SceneG aphPat h isaclassused in picking. See Chapter 4 for
more information on the class.

A region defined for abehavior. The activation volume of aview must
intersect the scheduling bounds of a behavior for the behavior to be active.
A behavior must be active to be able to execute in response to a stimulus.
See dso0 active, activation volume, and behavior.

An aternative to a scheduling bounds. See aso BoundingLeaf and
scheduling bounds.

See scheduling bounds.

The portion of a scene graph for which alight'sinfluence is considered. By
default, the scope of alight is the scene graph branch it is a member of.
Sub-graphs of the scene graph can be specified as the scope of alight. This
does not replace the specification of alights region of influence, but is
complementary to the influence of alight. See also influence (of a light).

The abstract concept of an input device such as joy-stick, tracker, or data
glove.

A method of aclassthat setsafield or value in an object. See also get*

n. The color of avertex or pixel asaresult of the application of the lighting
model (for avertex) or the shade model (for pixel).

v. To caculate the color of avertex or pixel by the application of the
lighting model (for a vertex) or the shade mode! (for pixel).

0-34

Getting Started with the Java 3D API Glossary

shade modd

shadow polygon

shininess

specular reflection

SpotLight class

stitching

stripification

surface norma

T

texd

texture

texture mapping

three space

transform

trandate

TransformGroup class

target object

triangulation

The Java 3D Tutorial

The caculation of each pixel's shade value from the shade of each
neighboring vertex shade. See aso shade, Gouraud shading and flat
shading.

A polygon used to creste a shadow in a scene. See section 6.7.3

The specification of how shiny a material surfaceis. Thisvalue (in the
range 1.0 to 128.0) is used in calculating the specular reflection of alight
from avisua object. The higher the value the more concentrated the
specular reflection is. See also specular reflection and material properties.

The highlight reflection of light from a shiny visual object. In the real world
presence of a specular reflection depends heavily on how smooth the surface
is. InJava 3D thisis modeled as a specular material color and a
concentration value. See aso material properties, specular color, and
concentration.

A light source class that has a position, direction, spread angle and
concentration values. See Chapter 6 for more information. See aso
concentration.

When the same geometry is rendered as awire frame and as filled polygons
(of different color), by default the depth of the pixels rendered for each will
not correspond and so the wire frame will appear to move in and out of the
surface and appear as athread though a cloth surface. See Section 2.6.3.
PolygonAttributesin Module 1 for additiona information.

Organization of triangles into triangle strips for rendering efficiency.
See normal.

A TEXture ELement. A pixel of atexture image. See texture mapping.

1. n. The image used in texture mapping a visua object. 2. v. To apply an
image to avisua object through texture mapping. See aso texture

mapping.

The application of atexture image to avisua object based on the
assignment of texture coordinate values to geometric vertices and texture
mapping filters. See aso texture, minification filter, and magnification
filter.

Three dimensional space.

The mathematical operation performed on a vertex, or collection of vertices,
to trandate, rotate, or scale the vertices. Transformations are represented as
4 x 4 matrices and stored in TransformGroup objects.

Move a vertex or vertices.

A subclass of Group that also applies a transformation to its child nodes.
See a'so transformation.

The scene graph object changed by a behavior or interpolator.

The subdivision of a polygon into triangles.

0-35

Getting Started with the Java 3D API Glossary

trilinear interpolation

Tuple* classes

typeface

U

utility class

Vv

vecmath

View class

view branch graph

view frustum

viewer

virtual universe

VirtualUniverse class

virtual world

visual object

The Java 3D Tutorial

The use of three linear interpolations to arrive at avalue. Thistechniqueis
used to calculate a shade value for a pixel from the shade values of vertices
in Gouraud shading. See also Gouraud shading and flat shading.

A st of classesdefined inthej avax. vecmat h package used to
represent tuples. The seven individual Tuple classes are Tuple2f, Tuple3b,
Tuple3d, Tuple3f, Tupledb, Tupledf, and Tupledd. These classes are the
superclasses of Color*, Point* and Vector* classes (among others).

The style of printing text. For example Times Roman, Helvetica, and
Courier are al typefaces. By contrast, afont is a typeface with other
specific attributes. For example, "10 point, italic, Times Roman" is afont.
See d'so font.

A classinthecom sun. j 3d. uti|l s package, that builds upon the
core classes to enhance programming capabilities.

An extension package that defines classes for computing vector math.
Among these are the Tuple* classes.

The View object isthe central object for coordinating all aspects of aview
including which canvas(es). Java 3D supports multiple simultaneous views.

The portion of the scene graph containing aView object. The parameters of
the viewing environment (e.g., stereo) and physical parameters (e.g.,
physical position of the viewer) are specified in the view branch graph.

A truncated pyramid-shaped viewing volume that defines how much of the
virtual universe the viewer sees. Visual objects not within the view frustum
are not visible. Objects that intersect the boundaries of the viewing frustum
areclipped. See Figure 1-9 for anillustration. See also clip, viewer, and
visual object.

The (primary) person viewing the display device Java 3D is rendering to. It
isfor this person the PhysicalBody calibration parameters are set.

The conceptual space in which the visual objects 'exist’. A virtual universe
may contain multiple virtual worlds as defined by L ocale objects.

The core class for Java3D. An instance of VirtualUniverse must be the
root of the scene graph.

The conceptua space in which the visual objects 'exist' as defined by a
single Locale object. A virtual world is contained by avirtual universe.

The term “visua object” is used in places where ‘ object’” would make sense
in English but not in the Object Oriented sense. A visual object may or may
not be visiblein aview depending on many factors. “Visual object” most
often refers to a Shape3D object. (see section 1.2) See also content.

0-36

Getting Started with the Java 3D API Glossary

w

wakeup condition

wakeup criterion

WRAP

yo-yo

z-buffer

The Java 3D Tutorial

The combination of wakeup criterion that specifies the trigger condition for
abehavior object. Java 3D calls the processStimulus method of the
behavior object in response to the occurrence of the wakeup condition for an
active behavior object. WakeupCondition is a class presented in Chapter 4.
See also behavior, processStimulus, and wakeup criterion.

Combinations of wakeup criterion objects form a wakeup condition for a
behavior object. Some possible wakeup criterion include AWTEvents,
collisions, behavior activation, passage of time, and a specified number of
frames have been drawn. WakeupCri t eri on isaclass presented in
Chapter 4. See also wakeup condition.

One of the Boundary Modes available in texture mapping. Repeats the
texture by wrapping texture coordinates that are outside the range [0,1].
See texture mapping.

A toy.

A data structure internal to the renderer to determine the relative depth
(distance from image plate) of visual objects on a per pixel basis. Only the
visual object closest to the image plate is visible.

0-37

	Table of Contents
	0 Overview and Appendices
	0.1 Navigating the Tutorial
	0.1.1 Tutorial Contents
	Module Overview
	Chapter Contents
	What is Not in the Tutorial

	0.1.2 How Can I Use the Tutorial
	0.1.3 Preface to the Tutorial
	What's Inside
	How to download this document
	Audience
	Feedback
	Typographic Conventions
	What Software is Required
	Cover Image

	0.1.4 Disclaimers

	Appendix A: Summary of Example Programs
	Chapter 1 Examples
	Chapter 2 Examples
	Chapter 3 Example Progams
	Chapter 4 Example Progams
	Chapter 5 Animation
	Chapter 6 Examples
	Chapter 7 Examples

	Appendix B: Reference Material
	Appendix C: Solutions to Selected Self Test Questions
	Glossary
	A
	B
	C
	D
	E
	F, G
	H, I
	J, K, L
	M
	N, O, P
	Q, R
	S
	T
	V
	U, V
	W, X, Y, Z

	Chapter 1: Getting Started
	Chapter 2: Creating Geometry
	Chapter 3: Easier Content Creation
	Chapter 4: Interaction
	Chapter 5: Animation
	Chapter 6: Lights
	Chapter 7: Textures

